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Markov Chain Simulations of Binary Matrices 

William B. Krebs 

Abstract: We consider Markov chains to simulate graphs with a fixed 

degree sequence and binary matrices with fixed row and column sums. By 

means of a combinatorial construction, we bound the subdominant eigen- 

values of the chains. Under certain additional conditions, we show that the 

bounds are polynomial functions of the degree sequences and the row and 

column sums, respectively. 

1. Introduction: 

Let M be a given m x n matrix whose entries are Os and Is. We want to choose a 

matrix N distributed uniformly over those m x n 0-1 matrices with the same row 

and column sums as M. 

Let A/[i'i,t2; ji, J2] be a 2 x 2 submatrix of M taking one of the two forms 

1    0 
0    1 

or 
0 1 
1 0 

Exchange 0s and Is in M[i'irtV;ii, 72)1 and call the resulting matrix M'. It is clear 

that the row and column sums Mf are the same as those of M. the operation taking 

M to M' is called an interchange. 

The interchange operation defines a graph structure on the binary matrices whose 

row and column sums equal those of M. The set of such matrices forms our vertex 

set; if jV and Nf are vertices, an edge joins them if there is an interchange taking 

N to N'. Call this graph the interchange graph. 

One way 01 ui..-* lating an approximately uniformly distributed 0-1 matrix with 

fixed row and column sums is by defining an irreducible Markov chain {A/,} on the 

interchange graph with uniform stationary distribution. If T is a function defined 

on 0-1 matrices, then 
1   n 

71  *-^ 
1 



with probability 1. If Mo is a fixed matrix in this set, we can then estimate P[T > 

T(MQ)] by simulating the Markov chain and computing empirical probabilities after 

a suitably large number of transitions. In particular, let D be the maximum degree 

of any vertex in the interchange graph, let p < D"1
y and for a vertex M, define 

P(M, M')=p    if {M, M1} is an edge 

P(M,M) = l-Dp 

P(M,M') = 0     otherwise 

It may be shown that these transitions define an irreducible Markov chain on the 

interchange graph with uniform stationary distribution. Call such a chain a modified 

random walk. 

The effectiveness of this approach depends on how rapidly the distribution of M,- 

converges to the uniform distribution. For binary matrices with fixed row and col- 

umn sums, the state space may be very large indeed. In general, it is approximately 

a hyper-exponential function of the size of the matrix M. See Good and Crook [4] 

for asymptotic approximations, as well as exact recurrence formulas for certain spe- 

cial cases. Ideally, we want the number of steps needed for the distribution of M, 

to converge to be a polynomial in the "size" of M. The main result of this paper 

is that for a particular modified random walk on the interchange graph, the eigen 

value defining this "relaxation time'' is bounded by a polynomial in the number of 

non-zero entries and the number of rows and columns in M, but is otherwise inde- 

pendent of the number of 0-1 matrices satisfying the row-column sum restrictions. 

Binary matrices with row and columns sums fixed can be regarded as matrix rep- 

resentations of bipartite graphs with a given degree sequence. The problem of sim- 

ulating general graphs with a fixed degree sequence can be approached by similar 

methods. Here, one constructs a Markov chain on a space of graphs by selectively 

adding, removing, or exchanging individual edges in the graph. Again, under cer- 

tain restrictions on the degree sequence, we show that the subdominant eigenvalue 

of this chain is bounded by a polynomial in the total number of edges. 

Uniform distributions on spaces of integer matrices subject to various row and 

column constraints arise in a number of areas. A very specific example is in biogeo- 

graphical ecology. Here we have a collection of habitats under study and a collection 



of species of interest. For each habitat, we know which species occur in that habitat. 

If we write the data as an incidence matrix of species in habitats, we get a binary 

matrix, say M0. 

Ecologists are particularly interested in whether or not two species compete. One 

way of assessing the degree of competition between two species i and j is to count 

the number Uj of habitats where both species occur and then compute the prob- 

ability that a random arrangement of species in habitats would have ivj or fewer 

common habitats for species i and j. We restrict the random arrangements by re- 

quiring that in any such arrangement, each species must occupy the same number 

of habitats and each habitat must support the same number of species as in our 

original Mo. Then the desired probability is P[Tij(M) > <»jj, where M is uniformly 

distributed over binary matrices with row and column sums equal to those of Mo. 

See SimberlofF[9], Conner and SimberlofF[3], and SimberlofTand Zaman [10] for more 

detailed discussion of this problem. 

Another place where random integer matrices arise is in the study of contingency ta- 

bles. Here, conventional statistical analysis might begin by testing for independence 

of rows and columns by means of the x2 statistic. If the hypothesis of independence 

is strongly rejected, there is a need for some alternative probability model to de- 

scribe the table. 

One alternative that has been proposed is a uniform distribution on the space of 

contingency tables with a given set of marginal totals. In the setting of the present 

paper, the state space may be regarded as the set of contingency tables with the 

further restriction that all entries be either 0 or 1. Diaconis and Efron [5] discuss this 

model for contingency tables, along with a family of other models. They provide 

a formula for computing approximate probabilities for this distribution. Markov 

chain simulations using the interchange formula provide an alternative means for 

computing probabilities for this distribution. 

In Section 2 of this paper, we review some standard definitions and notation for 

binary matrices, graph theory, and Markov chains. In Section 3, wc prove an 

essential graph theory lemma, and then apply it to bounding the eigenvalue of a 

Markov chain for generating an almost uniformly distributed graph with a fixed 



degree sequence. The main results of this paper are Propositions 6 and 7 in section 

4, where we compute a bound for the rate of convergence of a random walk on 

the interchange graph for a space of binary matrices. Afterwards, we discuss the 

convergence rates of functions of the chain. 

2. Some Definitions: 

For integer sequences r = (n,... ,rm) and s = (si,... ,sn), let be Sl(r,s) be the 

set of binary matrices with row sums r and column sums s, and suppose that 

a(r,i)#l. 

Define a graph 1 = (SI, £), with SI = Sl(r, s), and edge set £ defined by {M, M'} 6 £ 

if there exist rows i\ and i2 and columns j\ and j2 such that 

M[iui2;jiJ7] = 

"l 0' 
0 1 

0 r 
1 0 

A/'Iti,t2;ii,i2] = 

M'[ix,i2\JuJ2] - 

0 f 
1 0 

1 0 
0 1 

or 

(i) 

and M[fc,J] = M'[k,l]y for k =£ ii^ij or / ^ ji,J2. Call the operation taking M to 

M' an interchange, and J the interchange graph on 2l(r, s). We will often write 

either of these two interchanges in the form (*i,i2»ii»ij)* 

One important interpretation of Sl(r,s) is as the set of bipartite graphs with biparti- 

tion {1,... , m;m + l,... .m+n] and degree sequence rj,... ,rw;ji,... ,sn. We shall 

use either the graph or the matrix interpretation of SI, according to convenience. 

For binary matrices A = [ai;] and B = [6,-j], let 

.4 © i? = (ai; -f btJ    (mod 2)1        .4vJ? = [max{a^,&(J} ]. 

For future reference, we will review some standard graph theory notions. Let G = 

(V',£) be an arbitrary graph. Say that 7 = 'xo,X|,... ,x*tXfc+i = x0} is a circuit 

if x0, • • •, Xk are vertices and {x,, x,+j } is an edge for i = 0,..., it. If, in addition, 

x0,... ,Xjt arc distinct we say that 7 is elementary. Say that G is Eulcrian if there 

exists a circuit ß that traverses every edge in S exactly once; we call the circuit ß 



an Eulerian circuit. We recall the elementary result that a graph is Eulerian if and 

only if it is connected and contains either no or two vertices of odd degree. 

The fundamental result on interchanges is that the interchange graph is connected, 

known as Ryser's Theorem. 

Theorem 1. Let A and B be matrices in 2l(r,s) and let B-A = C\-\ VCqi where 

d,..., Cq are disjoint elementary circuits. Let the number of non-zero entries of 

Ci be 2ki, i = 1,..., q. Then there exists a sequence of ki H -f kq — q interchanges 

which transforms A into L. 

Proof: This is Theorem 3.2 in Brualdi[2]. 

We will also need some standard ideas about Markov chains. Let P be an irreducible 

aperiodic Markov transition matrix on some finite set. Then it is well-known that 

P has a unique stationary distribution TT, and |jPn(x,o) - TT(O)|J < ß", where ß\ is 

the subdominant eigenvalue of P. 

Given some knowledge of the geometry of our state space, we can bound ß\. Let 

P be reversible, so that 7r(x)P(x,y) = n(y)P(y1x) for all states x and y. Let 

Q(x,y) = ir(x)P(x,y). For each pair {x,y} in the state space, suppose there is a 

path 7ry connecting x to y. Let 

r/ = max Q(c)""1   £ *{x)*(y). 

Then, the following theorem holds. 

Theorem 2. For a reversible, irreducible Markov cliain P, the second largest eigen- 

value satisfies 

J. < 1 - — 
^   - S7/2 

Proof: This is Proposition 7 in Diaconis and Stroock[Gj. 

Finally, for arbitrary matrices AtB, define the matrix 

***«> «(2;) 



If Ai,..., An are real numbers, diag(Ai ,..., An) will denote the nxn diagonal matrix 

with entries Ai,... ,A„. 

3. Generating Graphs by Edge Perturbations: 

Let d = (<fi,... ,<in) be a sequence of positive integers. Let £(d) = Q be the set of 

graphs with degree sequence d, and suppose that Q ^ 0. Let Q' be the set of graphs 

with degree sequences d' = {d[,... ,d'n) satisfying 

t. d\ < di, i = l,...Tn 

». E:W-O=2 
Let S — Q U Q'. In [8], Section 2, Jerrum and Sinclair define the following set of 

transitions for a Markov chain on S. 

i. Select an edge {i,j} uniformly at random, 

it.  If G € Q and {ij} is an edge in G, let H = G - {ij}. 

iii.  If G € G\ {hj} is not an edge in G, and the degree of t is less than <f,, let 

H — G+ {*,)}- If the degree of 7 exceeds d3 select an edge {j,/:} uniformly at 

random and delete it. 

iv. In all other cases, do nothing. 

Let dm,ix = max(<f|,..., dn), and let N = ^ £}" ^« ^e tne number of edges in G. Say 

that d s p stable if JV > </*^ar - dtnax. In [8], Jerrum and Sinclair remark without 

proof that a Markov transition matrix defined by i. - it;, will have a subdominant 

eigenvalue that is bounded by a polynomial in {d\,..., dn) if d is p-stable. We now 

show this explicitly. 

Proposition 3. The subdominant eigenvalue of the transition matrix induced by 

i.-iv. satisfies the bound 

A   <l-l-{N4dm.r)~* 

Proof: Our approach follows that of Jerrum and Sinclair [7], [S]. As in these 

papers, we will define a system of canonical paths in S, use these to bound ij and 

then estimate the subdominant eigenvalue of the transition matrix. As a first step 

we prove a graph theory lemma. 

Lemma 4.  Let G — (\\S) be a connected graph.   Suppose £ = £\ U £2,     £\ C\ 



£2 = 0, and that |ej(v)| = |c2(v)| for all v € V, where c\(v) and e2(v) are the 

edges in S\ and £2, respectively, incident to v. Then G has an Eulerian circuit 

{v0,Vi,...,v2n-\,vo} such that {t>2t,t>2,+i} € £1 and {^21+1,^21+2} € £2 for i = 

0,...,n-l. 

Proof: It is easy to see that |£| is even, say |£| = 2n. The proof follows by an 

induction on n. The smallest n for which the conditions of the lemma can be 

satisfied is n = 2. For n = 2, we have V = {1,2,3,4}, Sl - {{1,2}, {5,4}} and 

£2 = {{2,3},{4,1}}, within isomorphism. 7 = {1,2,3,4,1} is then the desired 

circuit. 

Now suppose the lemma holds for n = k, and let n = k -f 1, so |£| = 2k + 2. Choose 

a vertex t'o and edges {u0,t>i} and {^1,^2} in £1 and £2, respectively. These exist, 

by hypothesis. Continuing in the same manner, select vertices r3,... tvjm so that 

{ü2i,t'2i+i} € £1, {^2«+1,^21+2} € £2, for i = 1,... ,m - 1 and all edges are distinct, 

until you reach the first vertex t?2m where such a choice cannot be made. I claim 

V';m = t'o, for if {ü2m,u>} appears in the circuit for all w adjacent to V2m, then an 

odd number of edges adjaant to t>2m must have been crossed prior to stage 2m. 

The only vertex in the grap.i satisfying this requirement is VQ. 

Let 7 = {v0,vi,... ,t'2m-i, t>2m}.   ^ m ~ ^ + *» tnen 7 *s tne desired circuit, and 

we are finished. So, suppose m < k f 1.  Let T = {{t';-i,Vi},i = 1, ,2m}, let 

£' = £ \ T and let G' be the subgraph induced by £'. Write G' = Gj U • • U G„ 

as the union of connected components. Then it is easy to see that each component 

G, satisfies the hypotheses of this lemma, with fewer than 2k edges. Thus, suitable 

circuits can be coi.. tructcd on each G, and adjoined to 7. The lemma follows. ■ 

Corollary 5. Let G = (V, £) be a connected graph as in Lemma 4. Suppose there 

exist vertices v+,r_ € V sucli that |ci(r+)| = |<-3(r+)| + l nnd \ti(tr-)| = |e2(t'_)|- 

1; for all other vertices, suppose ej(t») = €2(1')- Then, G has an Eulerian path 

{<■•«, t'l, ...,v„) such that v9 ~ v+, vn = t?_, and {tl
2l?i'2,+ i} t £1, {f2.+ i,t'2^2} € 

£2 for 1 = 0,...,n - 1. 

We now proceed to construct our set V ^f canonical paths. Let GfH € Q and let 

D = G '3 H be the symmetric difference of G and //.   Write DsDjU-Uft 



where Di,..., D* are the connected components of D. Any vertex v in D has the 

property that the numbers of edges in G\ H and H\G incident to v are the same. 

Thus Lemma 4 applies to each component Z),. 

Order the Eulerian subgraphs of G U H in some fashion, and for each such Eulerian 

subgraph, suppose a starting vertex VQ has been identified. Suppose that D\,..., Dk 

is an increasing sequence in the order. 

The canonical path from G to H will be defined by unwinding D\,... t Dk in order. 

The unwinding will be carried out as follows: 

i. For each component 2?,, fix a starting vertex v. Let V{ be an ordering of the 

Eulerian circuits on A, with v as starting (and ending) vertex. Note that 

every Eulerian circuit induces an ordering on the edges of Ex. 

it. Let *B, be the set of Eulerian circuits on D( such that edges in G \ H have odd 

parity mid edges in H \ G have even parity. (That is, if 7 = {v0,. • • ,t;2m}, 

then {i>2itt'2t+i} € G\ H and {t>2i+1,^21+2} £ H \ G for t from 0 to m - 1.) 

By Lemma 4, *8,- is not empty. Let ß be the first element in 03,, with respect 

to our ordering of Z\. 

Hi. Suppose ß = {t'o,..., V2m}- The unwinding begins by removing {v0, vi}. The 

next in — 1 steps consist of adding {i^i-i»^,} and lemoving {t>2i, ^2i+i} in 

sequence for i = 1, ,rn - 1. The final step is to add the edge {t>2m~i> t>2m}- 

Let {A/, A/'J be a transition in the canonical path from G to if, and let v be a 

vertex in M 0 M'. By the definition of canonical paths, tc(v) PI c//(u) C CAfnAf(v) 

C e(;(v) U c//(t'). Let S = M U A/' 0 (G •$ //). By elementary set theory, 

Mv)| = kA/uAr(v)0(^(iOec//(tO)| 

= kvuAf(r) U (e<;(r) 0 c//(v))| ~ kAluAf'(f) H (fG(f) ■» c//(u))] 

- Mr) U ew(r)l - (|cAluAr(r)| - \ca(v) fl *j/(r)|) 

= k;(r)| + k//(f)! - kA/uAf(i?)l 

There are three possible cases to consider. Let 1 be the unique vertex of degree 

2 in M 0 M'. Then |tA,nAr(r)| = d% + 1, and &*&#£?, |e5(i'))| = <i. - 1. 

Alternatively, Irt ; be the starting vertex in the cycle 7 we are unwinding. Then 

kAf(>)| = k.V'(;)l = <i; - 1. *<> ir_v(;))| - ti; + 1. For all other vertices *, \ca(v)\ = 

\ni(v)\ - kMn.wlr>| = dk, so |r.v(f»j = dk. 



Define a function ar(G>H) encoding G and H by setting 

(C r/^ „ / (^ ® #) ® (^ u M1) if r begins or ends a circuit 
*rl   '    }~ | (Geif)®(MüM')-cGli    otherwise 

Here, ec,t is the first edge in ß. 

From the discussion in the last paragraph, it follows that ar(GyH) € S. Further- 

more, a is one-to-one, since we can reconstruct G and H from crr(Cr, H) and MUM*. 

To see this, let A' -- <7r(G,tf)e(MuM'). If ar(G,H) 6 £, then tf = £>j U- • Ul>*. 

If ar(G, H) e £', then K = Dj U • • • U A-i U A U A+i U-'-UDjt, where Di has 

precisely two vertices of odd degree. We recover Z), by adding an edge joining the 

two odd-degree vertices. £', is the unique component containing M 0 A/', so D, is 

the current subgraph in the unwinding. 

Let d be the set of Eulerian paths on Dt starting at the initial vertex v, and having 

the property that edges in aT{G,H) have odd parity prior to M © M' and even 

parity afterwards, ß € C, so C, is not empty. Let ß be the first path in C,. Then 

ß induces a path on D, such that edges in G and H have odd and even parity 

respectively. Thus, ß = ß. G and H can now be identified by unwinding ß forwards 

or backwards from M, as necessary. 

To extend canonical paths to the whole of S, we will define a function G —♦ G that 

will associate a ''nearest" member of Q to each element in 5. If G € Q* let G = G. 

Now, let G 6 £'. Following Jerrum and Sinclair[S], define a graph (5 € £ that is 

"close" to G. There are two cases to consider. 

i. Suppose there arc vertices i and j such that d*t = dt - 1 and <r* = c/; — 1. If 

{«. j} i S, let Ö = G + {:,;}. If {i,;} £ 5, then find an edge {*,/} such that 

{i, k) and {;', /} are not edges and let G = G + {i, J:} -f {/, /} - {fc, /}. As shown 

in Jernun and Sinclair[S], section 3, such an edge always exists, if the sequence 

d is p stable. 

it. Alternatively, suppose there is a vertex : such that cfj = <f, — 2. Again, find an 

edge {kj} such that [ifk] and {i,/J are not edges and let G = G + {», *} + 

In either case, since G and G differ by at most two edges, at most A'2 graphs G can 



be associated with any G. 

For G, H € <S, define the canonical path from G to H by connecting G to (5, H to 

if, and defining the canonical path from G to # as in the preceding paragraphs. 

Then, the number of canonical paths crossing any given edge {M,M{} is at most 

N4\G'\. As before, let rj = maxeQ{e)~l £7x 3e Tr(x)w(y). Then, 

77 = Q(e)"1 max ^< 2N\S\ x JV4|S| x -J- = 2JV5 

Apply Theorem 2 to get 

This completes the proof of the proposition. ■ 

Remark: In [8], Jerrum and Sinclair describe an alternative algorithm for almost 

generating uniform random graphs in G(d) by tranlating the problem into one 

of simulating random perfect matchings. Additional structure provided by the 

matching problem gives the bound 

B <i (     i     (wyv 
Pl
-        \l6n*(n/2 + 2N)(n~l) \\G'\J 

for an arbitrary family Q(d). The p-stability condition gives a sufficient condition 

for |£'|/|5| to be polynomially bounded. If d is p-stable, then 

/ 1 V 
A < 1 - 16iV4n4(n/2 + 2iV)(n-l)> 

4. Simulating Binary Matrices: 

Let r = (rj,..., rH,) and s = (sj ,...,sn) be integer sequences such that 2l(r, s) is 

not empty. For convenience, write 21 = 2l(r,s). 

Wc will need notation for some other spaces of binary matrices. Let Qt; = U2l(r',s'), 

where the union is taken over sequences r' = (r[,..., r'm) s' = (s\,..., s'n) such that 

rj = r, - 1 r!t = r*,     * 7^ * 

s'j  = Sj  - 1 s't = 5/,       / ^ j 

10 



r'i, = rj, - 1 r|2 = r,-, - 1 

4 = 'A " 1 4 = *;> " 1 

for some indices i and j. Similarly, let 21" = U2t(r",s"), where r" = (r",... , rJJJ, 

s" = K>...,<),and 

for pairs of indices i'i, t2 and jri, j2• Let 5 = 01U 21' U 21". 

Let M £ 21. Define transitions for a Markov chain on 21 as follows: 

i. Select two entries muv and mr, uniformly at random from the entries in M 

equal to 1. 

it. If mua = mrv = 0, interchange muv a^ i mr, with mU9 and mrv. 

tu.  Otherwise, do nothing. 

Let P be a transition matrix corresponding to this transition scheme. Let n(M) = 

[21I"1, M £ 21. Then, it is not hard to show that 7r satisfies the detailed balance 

equations for P. If {Xn} is a Markov chain on 21 with these transitions then {Xn} 

is reversible, with stationary measure n. 

We wish to estimate the rate of convergence of the distribution of Xn to 7r. As in 

Section 3, we will construct a system of canonical paths in 21 . The construction 

will be done so that for any matrices J and F in 2t and any edge {M,M'} lying on 

the canonical path from J to F, we can map (J, F) uniquely to a matrix in S. 

Proposition 6. There exists a set T of paths joining every pair of points in 

21 such that the number of paths containing a fixed edge is bounded above by 

2((m;l) + i)\s\. 

Proof: Let J, F € 21 and suppose J © F = C, where C is an elementary circuit. 

There is a standard algorithm for transforming J to F by interchanges. (See, 

for example, Brualdi[2], Section 3.) Let C have edges {xi,yi}, {yi,x2}, {x2,y2}, 

• ■. • t {xjf rVk}y {yk %xi }■ Without loss of generality, suppose the matrices representing 

J and F have J„ = J22 = ... = ./** = 1, Jn = J23 = ... = ^*-i,* = Jfci = 0, 

Fu = F22 = ... = Fu = 0, F12 = F23 - • .. = Fk-iik = Fjti = 1, and JtJ = F|; 

elsewhere. Let p be the smallest integer such that Jp\ = 0; Jti = 0, so p < k. 

The first p interchanges will be (p,p- 1; 1, p), (p - lt p - 2; 1, p - 1),...(2,1;1,2). 

11 
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\0    *    * *   *    *    1    /                       \i*****0/ 

(a)                                                               (b) 

(l  l 

0    1    1 
\ /0 1 ^ 

1    0    1 
0   *   1 1 1*01 
0    *    * 1    1 1**00 
0   *   * *    1    1 1***10 
0    *    * *    *    1    1 1****10 

VI  *  * *   *    *    1    / \0   *****!    J 

(c) (d) 

Figure 1. The matrices (a) J, (b) F, (c) J © F, and (d) J', where m = n = 7, 

p = 4 

These p interchanges produce a matrix J' where J'p+\t\ = *7p+2,p+2 ==... = «/£* = 1» 

^P+I,P+2 = ... = J'k-\,k — J'k,i = Ö» ^d «A'> = ^i; elsewhere. (See Figure 1 for 

typical examples of 7, F, J 0 F, and /'.) Repeating this process will eventually 

transform J to F. Note that this algorithm proceeds by unwinding a series of 

elementary circuits which are contained in C, with the possible exception of one 

edge. Call these circuits subsidiary. 

It will be convenient to represent canonical paths somewhat differently. Associate 

each matrix .4 6 21 with the matrix -4 = diag(M, 1,1). We can map the canonical 

path from J to F to a somewhat different path from J to F As before, let p be 

the smallest integer such that JpX = 0. Let the first interchange in the canonical 

path from J to F be (l,m + 1; l,n + 1). If p = 2, let the second interchange be 

(l,2;n + 1,2); otherwise, let the second interchange be (p, rn + 2;p, n + 2). The next 

p- 1 interchanges will be (m + 2,p- l;p,p- l),(m-f 2,p-2;p- l,p-2),... ,(,n4- 

2,1;2,1),(1, in + 2; l,n + 1); these correspond precisely to the interchanges (p,p - 
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1; l,p), (p — l,p —2; l,p — 1),... ,(2,1; 1,2). Finally, make the interchange (l,p;n + 

l,n + 2). The unwinding will continue using the (p, n + 1) entry. 

Let {M,M'} be an edge in the canonical path from J to F. Without loss of 

generality, write the corresponding interchange as (/,/ — 1; 1,/). We can translate 

this to an interchange on the modified canonical path in a standard fashion. Suppose 

{M, M'} lies on a subsidiary cycle, with initial entry q and final entry p. Transform 

M and M' by the interchanges (g,m + l; l,n + l), (/, m + 2;/,n + 2), (/,p+l; l,n + l) 

and (<7,m-f 1; l,n-fl), (/- l,m-f 2;/- l,n-f 2), (/- l,p+ l;l,n + 1), respectively. 

This will transform M and M' into matrices M* and M*' such that M* is joined to 

M*' by the interchange (/ — 1, m -f 2; /, / — 1). Alternatively, suppose {Af, M'} does 

not lie on a subsidiary cycle. Then it is easy to see that (/,/ — 1; 1,/) corresponds 

to the interchange (/,/ — l;n + 1,/). To summarize, each edge {M,M'} in the 

interchange graph can be transformed to a modified edge {M*, M*'} by either one 

or three interchanges. 

The first p 4- 1 interchanges transform J into a matrix J', where «/i+2 p+2 = • • • = 
Ju = h Jp+i>P+2 - «^+2lPr3 = • • • = J'k-i,k = 7~*i = 1, and J^ = F0 for all other 

1 < i < m, 1 < .7 < n. Again, we can repeat this process to transform J into F 

eventually. 

Now, suppose J ® F has connected components (?i, ,Gy, and let G be one of 

these components. As in Section 3, specify a starting vertex for each (7, and order 

the Eulerian circuits starting from that vertex. By Lemma 4, each G, has at least 

one Eulerian circuit in which entries from J and F alternate. Let 7 be the first 

such circuit. Write 7 as {xi,yi,£2>!/?, • • • %x»* $/v,ari}- Let p = ininfj : Xj = x»,t < 

j} A inin{jf : y} = t/,,t < j}, and let ;(p) be the unique j < p such that x; = xp 

<* y> - yP- Then {i>(p),y>(p)},..., {yP-i,xp} or {%(,), *x,)+ih. • •» {^»Sk). *s 

the case may be, forms an elementary circuit, which we denote C\. Repeating this 

argument successively on G \ C\, G\(C\ U C2) and so forth, we come to an ordered 

decomposition of G into elementary circuits CjT , C*. 

Since 7 is an alternating Eulerian circuit, each C, is an alternating elementary cir- 

cuit. We can pass from J to F by successively unwinding (?j,..., (7r. In turn, each 

component G} can be unwound by unwinding the elementary circuits Cjtx,..., Cj.jt 
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in order. So the unwinding algorithm for elementary circuit?, extends to an unwind- 

ing algorithm for Eulerian circuits, thence for the difference between elements in 

21. 

To count canonical paths containing {M',M}, we will first encode modified paths 

containing {M*',M*} as a pair (p,<r) G {+1,-1} x S. Let J = diag(J, 1,1), F = 

diag(F, 1,1), and let 5(J, F) be the principal m x n submatrix of J®F0(M*' VM*). 

The degree sequence of S will depend on the position of {M*', M* } in the unwinding. 

There are three possible cases: 

i. {M*',M*} ends an elementary circuit. 

ii. {M*', M*} lies inside an elementary circuit, but is not on a subsidiary circuit. 

Let Xi be the starting vertex of the elementary circuit, and let yj be the 

current vertex being changed. Calculations similar to those in section 3 show 

that deg5(x,) = r,- - 1, deg5(t/j) = Sj + 1- Furthermore, it is not hard to see 

that the first edge (i,t#) of the current elementary circuit is in 5. 

Hi. {M*\M*} lies on a subsidiary circuit, with starting edge {p,p'} and ending 

edge {<?,$'}. As before, we will have deg5(xi) = r, — 1, deg5(t/j) = Sj + 1. 

Also degs(xp) = rp + 1, and degs(x?) = r? + l, and the edges {p,p'}, and 

{<?,</'} are in 5. 

With this in mind, define 

(^(J,F) in case i. 
S( J, F) — e^i' in case ii.   . 

S(J, F) - e,y - epy - eq>q>    in case Hi. 

Olio 

|   rl    m cases t. and ii. 
p{JyF) = < +1    in case *»., if (p - $)(p' - q') > 0 

[ -1    in case m\, if (p - g)(p' - </') < 0. 

Here, c,,,*, e^j», and cg?> are the edges joining {*',*''}, {p,p'}, and {$,?'}, respec- 

tively. 

Examining the definition will show that a(J,F) € 2t in case i., cr( J, F) € 21' in case 

if., and o(J,F) € 2l" in case m. 
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We claim thi\t we can determine J and F from (p,cr) and {M*M*'}. To see this, 

first observe that we can reconstruct S(J,F) from (/9, a). In cases t. and «., this is 

identical to the argument in Section 3. In case m., we have to identify the edges 
e*,»'5 ep,p'-> anc^ eq,q' an<^ restore them to a to obtain S.. 

Since there are precisely two rows in a with diminished row sums, one of which 

corresponds to M* 0 M*', and since M*[n + l,t'] = 1, reconstructing eti,' is auto- 

matic. To reconstruct epy and e?)7', note that M*\p,n + 1] = M*[q,n + 2] = 1, 

Sp, = 5p' — 1, and s'qt =^ sq* — 1. This leaves two possible pairs of edges, which are 

distinguished by the value of p. 

Knowing S(J,F), we can reconstruct J and F by an argument similar to that in 

Section 3. Let J ® F have connected components Gi,... ,G>. There is a unique 

component GK containing the edges {u,v} and {u, u'}. For j ^ K, let 7j be the first 

Eulerian path on Gj- such that edges in S and M* V M *' alternate. For 1< j < /c, 

odd parity edges are in J and even parity edges are in F; for /c < j < r, the parity of 

edges is reversed. Let 7* be the first Eulerian path on GK such that its elementary 

circuit decomposition E\,...,EP gives even parity to edges in S preceding {u,v} 

and odd parity to edges in 5 following {v,u'}. Odd parity edges preceding {u,v} 

and even parity edges following {u,ti'} are in J; Even parity edges preceding {u,u} 

and odd parity edges following {v, u'} are in F. Thus, J and F can be reconstructed 

from M* V M*' by adding and deleting appropriate edges. 

Since (J, F) —> a(J,F) is invertible, it follows that the mapping is one-to-one. 

Each encoding a(J,F) is in 5. Thus, the number of canonical paths containing 

{M*\Mm} is at most |5|. 

It remains to compute the number of modified transitions {A/*', M*} corresponding 

to each possible transition {M\ A/}. Depending on its position in the the elemen- 

tary circuit £, each transition {A/', M) can be transformed to a modified transition 

{A/*\ Af'} by either one or three interchanges. If one interchange is required, then 

the interchange affects one of the two vertices in A/\A/', this gives two possible pairs 

{A/*\A/*}. If three interchanges are required, then {A/\ A/} lies on a subsidiary 

cycle Thus, we need to choose the beginning and the end of the subsidiary cycle, 

by choosing any two ones in a column modified by {M\ A/}. This can be done in at 
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most 2(m~1) possible ways. Thus there are at most 2(m^)-\-2 pairs {M*',Af*} 

corresponding to each pair {M1, M}. The total number of canonical paths crossing 

{M1,M) is then at most 

.((-,->.)« 

As before, the estimate of the number of canonical paths gives an estimate of the 

subdominant eigenvalue of the transition matrix of {Xn}. 

Proposition 7. 

Proof: Again, we have rj = max«. Q(e)-1 £ 5e 7r(x)7r(y). Using our bound on 

the number of canonical paths, 

^w-»(("2->i).w-^ 

vv 2 J • ) m m 

The proposition now follows from Theorem 2. ■ 

Proposition 8. Let 21 = 2l(r,s). Then a sufficient condition for |5|/|2l| to be 

polynomially bounded is that N > 2(rmaz - \)($max - 1) 4-1. 

Proof: Let (rj,..., r'm) and («J t....., s'n) be the row and column sums for a matrix 

in 51'. Then (r'maI - l)(s'max - 1) < (rmar - l)(smar - 1). Suppose N > 2(rmüX - 

l)(w - 1) + 1. Then A' - 1 > 2(rmai - l)(w - I) > 2(r'm„ - l)(s'mar - 1), 

so 2l((rj,..., r'm); (s\,...,s'n)) is itself a p-stable set. As the number of p< rible 

sequences (rj,..,, r'm) and (s\,..., s'u) is a polynomial in m and n, it follows that 

the |S|/|$| is polynomially bounded. ■ 

16 



Our estimate of ß\ gives a bound on the average error committed by using sample 

averages of our Markov chain to approximate integrals. We state our bound for a 

general chain. 

Let {Xn} be a Markov chain on a finite state space, with stationary distribution ir. 

Let / be a function and let /i/ == S/(z)n"z, °/ = ZX/(X) ~" Z*/)3**« For m">n > 0» 

let j4m,n = r*_1 X^m+n ffäi). If £r denotes expectation for the chain with XQ = z, 

then the following estimate is routine: 

Proposition 9. 

*(*-,. - N? < ^K) (i + -:W (i + S(TZÄ)ff) •?    (i3) 

where 7r* = minr TT(X). 

Proof: For m ~ Poisson(iV), this estimate is given in Aldous[l] Proposition 4,2, 

with ßi in place of ß™ and some differences in notation. For fixed m, it suffices 

to follow the argument given in Aldous to his expression (4.9), and then to observe 

that for any fixed m > 0 and any A, Am = (1 + (A - l))m < exp(m(A - 1)). ■ 

Let {Xn} be the Markov chain on 21, with transition matrix P, and suppose we 

wish to estimate /// for some function /; here, 7r(i) = |2l|~l. To estimate /!/ with 

MSE smaller than e, we can take m > log Mj log 0U giving 1 4- \%\ß™ < 2. Then 

take n > Sa}/f(l - ft) to give £r(Am,„ - fif)2 < e. 
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